Selasa, 08 Agustus 2017

POTENSIAL LISTRIK, KAPASITOR, ARUS LISTRIK, HAMBATAN & RANGKAIAN LISTRIK

Potensial Listrik

Potensial listrik dilambangkan dengan V , dengan satuannya adalah Volt atau Joule /Coulomb. Potensial listrik merupakan besarnya energi potensial listrik pada setiap satu satuan muatan . Jika dirumuskan adalah sebagai berikut:

Perhatikan Gambar Diatas, Besar Potensial Listrik Di Titik P Ialah:
V= EP/q = kqQ/qr 

Keterangan :
V = potensial listrik di titik p(V)
Q = muatan listrik (c)
r  = jarak titik p dengan muatam Q (m)
Potensial listrik merupakan besaran scalar , tidak seperti kuat medan listrik yang merupakan besaran vector. Jika sebuah titik dipengaruhi oleh beberpa muatan dengan jarak yang berbeda-beda maka besar potensial listrik dititik P tersebut merupakan jumlah scalar potensial listrik dari masing-masing muatan pada titik P. Jika dibuat suatu rumusan :
usaha yang telah kita rumuskan pada uraian sebelumnya mempunyai hubungan dengan potensial ini. Usaha untuk memindahkan muatan q dari titik yang mempunyai potensial Va ke titik yang mempunyai potensial Vb adalah:
atau dapat ditulis dengan persamaan:
Dengan:
W = usaha (joule)
Q = muatan ( c )
V  = beda potensial (volt)
Potensial listrik oleh bola konduktor bermuatan

Potensial listrik disekitar atau didalam bola konduktor bermuatan dapat ditentukan dengan cara menganggap muatan bola tersebut berada dipusat bola.pada gambar terdapat tiga titik yang masing –masing berada di dalam bola , dipermukan bola dan diluar bola . Ketiganya mempunyai besar potensial masing-masing adalah:
1.    Pada titik A (didalam bola)
besar potensial didalam bola akan sama dengan besar potensial dipermukaan bola. Hal ini karena konduktor bersifat equipotensial yaitu mempunyai potensial yang sama di setiap titiknya.
2.    Pada titik B (dipermukaan bola)
besar potensial dipermukaan bola adalah
3.    Pada titik C (diluar bola)
besar potensial diluar bola adalah



dengan r = jarak dari pusat bola menuju titik tersebut.

 KAPASITOR
Kapasitor (Capacitor) atau disebut juga dengan Kondensator (Condensator) adalah Komponen Elektronika Pasif yang dapat menyimpan muatan listrik dalam waktu sementara dengan satuan kapasitansinya adalah Farad. Satuan Kapasitor tersebut diambil dari nama penemunya yaitu Michael Faraday (1791 ~ 1867) yang berasal dari Inggris. Namun Farad adalah satuan yang sangat besar, oleh karena itu pada umumnya Kapasitor yang digunakan dalam peralatan Elektronika adalah satuan Farad yang dikecilkan menjadi pikoFarad, NanoFarad dan MicroFarad.
Konversi Satuan Farad adalah sebagai berikut :
1 Farad = 1.000.000µF (mikro Farad)
1µF = 1.000nF (nano Farad)
1µF = 1.000.000pF (piko Farad)
1nF = 1.000pF (piko Farad)
Kapasitor merupakan Komponen Elektronika yang terdiri dari 2 pelat konduktor yang pada umumnya adalah terbuat dari logam dan sebuah Isolator diantaranya sebagai pemisah. Dalam Rangkaian Elektronika, Kapasitor disingkat dengan huruf “C”.
Jenis-Jenis Kapasitor
Berdasarkan bahan Isolator dan nilainya, Kapasitor dapat dibagi menjadi 2 Jenis yaitu Kapasitor Nilai Tetap dan Kapasitor Variabel. Berikut ini adalah penjelasan singkatnya untuk masing-masing jenis Kapasitor :
A. KAPASITOR NILAI TETAP (FIXED CAPACITOR)
Kapasitor Nilai Tetap atau Fixed Capacitor adalah Kapasitor yang nilainya konstan atau tidak berubah-ubah. Berikut ini adalah Jenis-jenis Kapasitor yang nilainya Tetap :
1. Kapasitor Keramik (Ceramic Capasitor)
Kapasitor Keramik adalah Kapasitor yang Isolatornya terbuat dari Keramik dan berbentuk bulat tipis ataupun persegi empat. Kapasitor Keramik tidak memiliki arah atau polaritas, jadi dapat dipasang bolak-balik dalam rangkaian Elektronika. Pada umumnya, Nilai Kapasitor Keramik berkisar antara 1pf sampai 0.01µF.
Kapasitor yang berbentuk Chip (Chip Capasitor) umumnya terbuat dari bahan Keramik yang dikemas sangat kecil untuk memenuhi kebutuhan peralatan Elektronik yang dirancang makin kecil dan dapat dipasang oleh Mesin Produksi SMT (Surface Mount Technology) yang berkecepatan tinggi.

2. Kapasitor Polyester (Polyester Capacitor)
Kapasitor Polyester adalah kapasitor yang isolatornya terbuat dari Polyester dengan bentuk persegi empat. Kapasitor Polyester dapat dipasang terbalik dalam rangkaian Elektronika (tidak memiliki polaritas arah)

3. Kapasitor Kertas (Paper Capacitor)
Kapasitor Kertas adalah kapasitor yang isolatornya terbuat dari Kertas dan pada umumnya nilai kapasitor kertas berkisar diantara 300pf sampai 4µF. Kapasitor Kertas tidak memiliki polaritas arah atau dapat dipasang bolak balik dalam Rangkaian Elektronika.

4. Kapasitor Mika (Mica Capacitor)
Kapasitor Mika adalah kapasitor yang bahan Isolatornya terbuat dari bahan Mika. Nilai Kapasitor Mika pada umumnya berkisar antara 50pF sampai 0.02µF. Kapasitor Mika juga dapat dipasang bolak balik karena tidak memiliki polaritas arah.

5. Kapasitor Elektrolit (Electrolyte Capacitor)
Kapasitor Elektrolit adalah kapasitor yang bahan Isolatornya terbuat dari Elektrolit (Electrolyte) dan berbentuk Tabung / Silinder. Kapasitor Elektrolit atau disingkat dengan ELCO ini sering dipakai pada Rangkaian Elektronika yang memerlukan Kapasintasi (Capacitance) yang tinggi. Kapasitor Elektrolit yang memiliki Polaritas arah Positif (-) dan Negatif (-) ini menggunakan bahan Aluminium sebagai pembungkus dan sekaligus sebagai terminal Negatif-nya. Pada umumnya nilai Kapasitor Elektrolit berkisar dari 0.47µF hingga ribuan microfarad (µF). Biasanya di badan Kapasitor Elektrolit (ELCO) akan tertera Nilai Kapasitansi, Tegangan (Voltage), dan Terminal Negatif-nya. Hal yang perlu diperhatikan, Kapasitor Elektrolit dapat meledak jika polaritas (arah) pemasangannya terbalik dan melampui batas kamampuan tegangannya.

6. Kapasitor Tantalum
Kapasitor Tantalum juga memiliki Polaritas arah Positif (+) dan Negatif (-) seperti halnya Kapasitor Elektrolit dan bahan Isolatornya juga berasal dari Elektrolit. Disebut dengan Kapasitor Tantalum karena Kapasitor jenis ini memakai bahan Logam Tantalum sebagai Terminal Anodanya (+). Kapasitor Tantalum dapat beroperasi pada suhu yang lebih tinggi dibanding dengan tipe Kapasitor Elektrolit lainnya dan juga memiliki kapasintansi yang besar tetapi dapat dikemas dalam ukuran yang lebih kecil dan mungil. Oleh karena itu, Kapasitor Tantalum merupakan jenis Kapasitor yang berharga mahal. Pada umumnya dipakai pada peralatan Elektronika yang berukuran kecil seperti di Handphone dan Laptop.

B. KAPASITOR VARIABEL (VARIABLE CAPACITOR)
Kapasitor Variabel adalah Kapasitor yang nilai Kapasitansinya dapat diatur atau berubah-ubah. Secara fisik, Kapasitor Variabel ini terdiri dari 2 jenis yaitu :

1. VARCO (Variable Condensator)
VARCO (Variable Condensator) yang terbuat dari Logam dengan ukuran yang lebih besar dan pada umumnya digunakan untuk memilih Gelombang Frekuensi pada Rangkaian Radio (digabungkan dengan Spul Antena dan Spul Osilator). Nilai Kapasitansi VARCO berkisar antara 100pF sampai 500pF
2. Trimmer
Trimmer adalah jenis Kapasitor Variabel yang memiliki bentuk lebih kecil sehingga memerlukan alat seperti Obeng untuk dapat memutar Poros pengaturnya. Trimmer terdiri dari 2 pelat logam yang dipisahkan oleh selembar Mika dan juga terdapat sebuah Screw yang mengatur jarak kedua pelat logam tersebut sehingga nilai kapasitansinya menjadi berubah. Trimmer dalam Rangkaian Elektronika berfungsi untuk menepatkan pemilihan gelombang Frekuensi (Fine Tune). Nilai Kapasitansi Trimmer hanya maksimal sampai 100pF.

Fungsi Kapasitor dalam Rangkaian Elektronika
Pada Peralatan Elektronika, Kapasitor merupakan salah satu jenis Komponen Elektronika yang paling sering digunakan. Hal ini dikarenakan Kapasitor memiliki banyak fungsi sehingga hampir setiap Rangkaian Elektronika memerlukannya.
Dibawah ini adalah beberapa fungsi daripada Kapasitor dalam Rangkaian Elektronika :
  • Sebagai Penyimpan arus atau tegangan listrik
  • Sebagai Konduktor yang dapat melewatkan arus AC (Alternating Current)
  • Sebagai Isolator yang menghambat arus DC (Direct Current)
  • Sebagai Filter dalam Rangkaian Power Supply (Catu Daya)
  • Sebagai Kopling
  • Sebagai Pembangkit Frekuensi dalam Rangkaian Osilator
  • Sebagai Penggeser Fasa
  • Sebagai Pemilih Gelombang Frekuensi (Kapasitor Variabel yang digabungkan dengan Spul Antena dan Osilator.

  • ARUS LISTRIK
    Arus listrik akan mengalir jika ada beban listrik, misalnya lampu atau pemanas yang tertutup dengan sumber listriknya.  Rangkaian tertutup berarti rangkaian yang seluruh bagiannya (beban, penghantar, sakelar) terhubung dengan sumber listriknya.
    Arus listrik mengalir dari potensial tinggi ke potensial rendah. Hal ini berlawanan dengan arah aliran elektron.

    Dalam sumber arus, elektron bergerak dari kutub positif ke kutub negatif. Sementara itu, dalam rangkaian tertutup, elektron mengalir dari kutub negatif ke kutub positif melalui bebannya. Aliran arus listrik merupakan lawan dari aliran elektron.

    Alat-alat tertentu (baterai) mampu menyimpan muatan listrik dan mengalirkannya. Jumlah muatan listrik yang bersimbol Q mengandung pengertian kemampuan alat listrik untuk menyimpan atau membuang arus listrik (I) selama waktu tertentu (t). Secara matematis hal itu bisa ditulis :

    Q=I.t


    Keterangan :
    Q = Muatan listrik (Coulomb)
    I = Arus listrik (Ampere)
    t = waktu (Sekon)
    A.   Hambatan Listrik
    Hambatan listrik adalah sesuatu yang menahan aliran listrik. Hambatan listrik sering disebut juga dengan resistansi, mengacu pada istilah bahasa inggris Resistance yang berarti hambatan. Pada dasarnya setiap material memiliki hambatan listrik. Sebuah konduktor yang cenderung menghantarkan listrik memiliki hambatan yang kecil dan sebuah isolator yang tidak bisa dialiri listrik memiliki hambatan yang besar.
    Nilai hambatan listrik dinyatakan dalam satuan Ohm (Ω). Kata Ohm diambil dari nama fisikawan jerman Georg Simon Ohm, yaitu orang yang menemukan hubungan antara tegangan arus dan hamabatan listrik yang dikenal dengan Hukum Ohm. Satuan Ohm juga bisa ditulis dengan tanda Ω, yaitu karakter Omega dalam susunan abjad latin.
    Simbol hambatan listrik ditulis dengan huruf R, singkatan dari Resistance. Dalam praktek elektronika sehari-hari, huruf “R” juga sering digunakan untuk menyebut komponen resistor, yaitu komponen elektronika yang berfungsi sebagai hambatan.
    Hukum Ohm menyatakan bahwa besarnya kuat arus yang mengalir diantara dua titik berbanding lurus dengan beda potensial antara kedua titik tersebut. Karena arus yang mengalir berbanding terbalik dengan hambatan listrik antara dua titik tersebut maka dapat dinyatakan bahwa kuat arus yang mengalir sama dengan tegangan listrik dibagi hambatan listrik.

    B.   Rangkaian Listrik
    a.     Rangkaian Listrik Seri
    Rangkaian listrik seri adalah suatu rangkaian listrik di mana input suatu komponen berasal dari output komponen lainnya. Kelebihan dari rangkaian listrik seri dapat menghemat biaya (digunakan sedikit kabel penghubung). Sedangkan kekurangannya adalah jika salah satu komponen dicabut atau rusak maka komponen yang lain tidak akan berfungsi sebagaimana mestinya. Misal tiga buah bola lampu dirangkai seri, maka input dari lampu satu akan datang dari output lampu yang lain. Jika salah satu lampu dicabut atau rusak, maka lampu yan lain akan ikut padam.
    Persamaan hambatan pengganti rangkaian seri dapat dicari dari persamaan awal, di mana kuat arus listrik pada tiap tiap hambaran adalah sama, sedangkan beda potensial di tiap tiap hambatan bernilai berbeda.

    Sifat-sifat rangkaian seri adalah sebagai berikut:
    1.     Nilai hambatan pengganti lebih besar dari nilai hambatan masing-masing, Karena Rp = R1 + R2 + R3 + …..+Rn
    2.     Kuat arus yang mengalir dalam setiap hambatan sama besar
    3.     Dapat dijadikan pembagi tegangan, karena Vp = VR1 + VR2 + VR3 + …+VRn,
    4.     Beda potensial pada setiap hambatan dapat dihitung, dengan menggunaakan hukum Ohm, karena VRi = i.Ri,

    b.     Rangkaian Paralel
    Rangkaian listrik paralel adalah suatu rangkaian listrik di mana semua input komponen berasal dari sumber yang sama. Semua komponen satu sama lain tersusun paralel. Hal inilah yang menyebabkan susunan paralel dalam rangkaian listrik menghabiskan biaya yang lebih banyak (kabel penghubung yang diperlukan lebih banyak). Susunan paralel memiliki kelebihan tertentu dibandingkan susunan seri. Adapun kelebihannya adalah jika salah satu komponen dicabut atau rusak maka komponen yang lain tetap berfungsi sebagaimana mestinya. 

    Persamaan hambatan pengganti paralel dapat dicari dari persamaan awal, di mana beda potensial di masing masing komponen adalah sama satu sama lain, sedangkan kuat arus yang masuk titik percabangan sama dengan jumlah kuat arus di masing masing komponen.
              Sifat-sifat rangkaian paralel, adalah sebagai berikut:
    1.     Nilai hambatan pengganti menjadi lebih kecil dari nilai hambatan masing-masing,
    2.     Kuat arus listrik yang mengalir dalam setiap hambatan berbeda (kecuali nilai setiap hambatan sama, arus pun sama), sebab; itotal = i1 + i2 + i3 + … + in
    3.     Dapat dijadikan pembagi arus, karena mematuhi hukum Kirchoff I
    4.     Beda potensial antara ujung-ujung setiap hambatan sama, karena Vab = VR1 = VR2 = VR3 = … = VRn,
    c.      Rangkaian Listrik Campuran
    Rangkaian listrik campuran (seri-paralel) merupakan rangkaian listrik gabungan dari rangkaian listrik seri dan rangkaian listrik paralel.


    Untuk mencari besarnya hambatan pengganti rangkaian listrik gabungan seri-paralel adalah dengan mencari besaranya hambatan tiap tiap model rangkaian (rangkaian seri dan rangkaian paralel), selanjutnya mencari hambatan gabungan dari model rangkaian akhir yang didapat. Misalnya seperti rangkaian di atas, maka model rangkaian akhir yang didapat adalah model rangkaian seri, sehingga hambatan total rangkaian dicari dengan persamaan hambatan pengganti rangkaian hambatan seri.
           Rangkaian hambatan campuran seri-paralel terdiri dari dua jenis rangkaian, yaitu rangkaian hambatan seri dan rangkaian hambatan paralel. Persamaannnya tidak lain adalah persamaan yang berlaku dalam rangkaian seri dan rangkaian paralel.
    ``                          



Pengikut